The Flex-Gen project

FPLG >50% efficiency with HCCI combustion and alternative fuels

Tommaso Lucchini - Politecnico di Milano

Acknowledgments

- Giovanni Gaetano Gianetti
- Nicola Morandi
- Matteo Ferrarini

- Assessment of a multi-fuel, high-efficiency FPLG for power generation •
- Opposed piston configuration •
- Fuels: (bio)methane and H_2 \bullet
- Low temperature combustion (HCCI)

Polimi Flex-Gen activities

CFD study of gas exchange and combustion in FPLG geometries

SI-FPLG: mobility

HCCI-FPLG: power generation

Target: 10-20 kW SI stoichiometric combustion with tumble flow Low-Pressure direct-injection Bore: 56.5 mm Stroke: 49 mm Compression ratio: 12

SI-FPLG

1D realistic schematic definition with CFD simulation results

Understanding charge motions and fuel-air mixing

Time = 0.0245 s

Time = 0.0330 s

Time = 0.0285 s

STEMS

Combustion simulations

CFD computed burned mass fraction unconventional profile used in 1D simulations

Politecnico di Torino

How to maximize the efficiency of an IC engine?

Svreck (2011) Exploration of Combustion Strategies for High-Efficiency, Extreme Compression Engines

Opposed free-piston configuration

Rapid compression machine (RCM)

CFD simulations: from RCM to CH₄-FPLG

CH₄-FPLG CFD simulations: first geometry

First assessment of the FPLG:

- Uniflow configuration
- 8 ports exhaust
- 12 ports intake
- Symmetric piston motion law profile obtained from RCM engine-like experiment

Politecnico di Torino

CH^{*d*}-FPLG CFD simulation results : gas exchange

© STEMS

INTAKE

0.0e+00

POLITECNICO | DIPARTIMENTO MILANO 1863 | DI ENERGIA

Politecnico di Torino

16.5 Hz

CH₄-FPLG CFD simulations: final geometry

Intake manifold divided into two regions to limit methane slip:

- First one that is open filled with air only
- Second one with air and fuel

Compression stroke was slowed down by a 5% compared to expansion

CH₄-FPLG CFD simulations: gas exchange

CH₄-FPLG CFD simulations: gas exchange

Main outputs after gas exchange:

- Target $\lambda = 2$ reached
- Good homogeneity index before TDC
- Methane slip reduced (-70%) but some improvements are required

CH₄-FPLG CFD simulations: combustion

CH₄-FPLG CFD simulations: combustion

H₂-FPLG simulations

Sandia prototype (2016)

Bore	81.15 mm
Stroke	220 mm
Mover mass	4.9 kg
Compression ratio	~ 30
Frequency	~ 30 Hz
Power	~ 15 kW
Intake pressure	1.2 bar
Intake temperature	300 K
Equivalence ratio	0.15

Gasdyn+Simulink integrated model

- Gasdyn for combustion chamber and ducts
- Simulink for gas-spring and electric machine

H₂-FPLG simulations

- Stroke increases with CR
- Symmetry of position-velocity diagram increasing with stroke

- Slightly lower efficiency values (H₂ ignites earlier than CH₄)
- Efficiency decrease after CR = 35

© STEMS

Politecnico di Torino

POLITECNICO | DIPARTIMENTO MILANO 1863 | DI ENERGIA

- H₂ ignites always before TDC (compression ratio limitation)
- All cases with dp/dt < 10 MPa/ms

Conclusions

- 1D and CFD simulations supporting opposed-FPLG development for mobility and power generation applications;
- Definition of a SI combustion system for mobility applications
- Potential of HCCI combustion for power generation: \bullet
 - Definition of a preminiary combustion chamber configuration
 - Very lean combustion ($\lambda > 2$)
 - Indicated efficiency > 55%
 - Near-zero emissions

