

Efficient use of Low-Carbon Fuels in Internal Combustion Engines

Tommaso Lucchini

Dipartimento di Energia, Politecnico di Milano

www.engines.polimi.it

- Cost
- Performance, consumption
- On-board and global conversion efficiency
- Rules:
 - Pollutants
 - CO₂ and other greenhouse gases
- Range
- Recharging/refuelling infrastructure

Defossilizing propulsion:

• Fossil fuels ⇒ energy carriers/vectors

Requirements:

- Availability of wind, solar and biomass energy
- Installed capacity
- Distribution and storage infrastructure

The IC engine evolution

- High efficiency operation range continuosly extended
- Maximum engine efficiency increasing with electrification:
 - ~40% mild-hybrid
 - >40% full-hybrid
 - ~ 50% series-hybrid

Defossilization of IC engines

Advanced bio-fuels

 Expected important contribution from Biomethane, bio-ethanol, bio-methanol, biogasoline, biodiesel and HVO.

Synthetic fuels (e-fuels)

- Decarbonization of aviation and maritime transport
- Road transport? Efficiency vs convenience:
 - Local production: avoiding curtailment
 - Complementing *pure* electrification
 - Possibility to import

E-fuels for IC engines

E-fuels for IC engines

Carbon-based e-fuels

Carbon-free e-fuels

E-fuels for IC engines

SI: spark-ignition **TJI**: turbulent jet ignition **HPDI**: high-pressure directinjection **DF**: dual-fuel **CI**: compression-ignition **HCCI**: homogeneous charge compression ignition **PCCI**: premixed charge compression-ignition

H₂ fueled IC engines (H2ICE)

High-performance cars

Light and heavy duty transport

Power generation and offroad

H₂ fueled IC engines (H2ICE) - today

Spark-ignition

- Lean combustiojn ($\lambda > 2.5$)
- Direct-injection (low or high pressure)
- Turbocharging
- ⇒ Max efficiency ~45%
 ⇒ zero-impact (ATS)

Sources: BOSCH, PHINIA

Compression-ignition

• Diffusion combustion: high compression ratio, no abnormal combustion

⇒ Max efficiency >50%
 ⇒ CO₂ emissions lower than 3 g/t km zero-emission limit

Sources: Westport, Volvo

H₂ fueled IC engines (H2ICE) - challenges

Spark-ignition

Avoid pre-ignition

Non-controlled combustion caused by hot spots and deposits.

- Limitation of efficiency
- Detailed study of the causes
- Use of *flexible* spark plugs

Compression-ignition

Minimizing the pilot fuel

Catalyst coating

Platinum-300microns

Reducing H₂ ignition delay

Modified piston with coating Modified piston without coating

H₂ fueled IC engines (H2ICE) - dual-fuel

H₂ fueled IC engines (H2ICE) - future?

Argon power cycle zero pollutants engine

- Closed-cycle engine (condensation of exhaust H₂O)
- H₂ ed O₂ from electrolysis
- 65% potential efficiency (high Ar c_p/c_v ratio)
- Suitable for distributed power generation (*grid balancing*)
- APC academic and industrial research active in different countries

Defossilization of maritime transport

Different IC engines onboard:

- Propulsion (low-speed 2-stroke, medium-high speed
 - 4 stroke)
- Gensets (4 stroke)

$\mathrm{CO}_{\mathbf{2},\mathrm{eq}}$ WTW reduction target for maritime transport

Defossilization of maritime transport

Everlience (dual-fuel 2T orders)

Defossilization of maritime transport - 2S / dual-fuel

Defossilization of maritime transport - 4S / NH₃

- High RON and low flame speed
- GHG emissions: N_2O (GWP = 300)
- Pollutants: $NO_x ed NH_3$
- Compatibility with lubricants

- SCR for exhaust gas after-treatment
 Maximum efficiency: ~45%

Diesel pilot injection or prechamber (passive or H_2 -active)

Combustion chamber design: turbulence generation

Defossilization of maritime transport - 4S / MeOH

POLITECNICO MILANO 1863

MeOH for cars/trucks/buses

Advantages:

- High heat of evaporation
- High octane number
- High flame speed
- Large flammability range

Drawbacks:

- Cold start
- Material compatibility
- Injector cavitation

Dedicated PFI and GDI injectors

Vehicle applications

Heater OFF

Heater ON

26000 public transport vehicles (Taxi, bus)

Electrified powertrain (CR = 15, max efficiency: 45%)

Heavy duty truckwith dedicated engine

Fonti: Geely, Phinia

Road transport defossilization - *drop-in* **e-fuels**

• A combined use of different propulsion systems can accelerate the decarbonisation of road transport compared to the use of a single technology, with a significant contribution from electrified vehicles powered by e-fuels.

Sources: FVV, Frontiers Economics

Road transport defossilization - REEV

- BEV platform hybridized
- Series-hybrid propulsion
- Reduced battery capacity that still guarantees most (short) journeys in electric mode

C-Segment SUV - REEV - 200 km EV-Range Real world Electricity / Fuel consumption (daily charging)

Biofuels and power generation

Biomethane or synthetic methane CHP

CO₂ usage

Hydrogen CHP/CCHP

Carbon-neutral fuels & green hydrogen

Biogas (Flex-Biogas) CHP

Hot-side

Combustion & Exhaust

The ICE Group

- In-house 1D (Gasdyn) and CFD (Lib-ICE) software development for performance and emissions prediction in high efficiency and low emission internal combustion engines.
- Research and industrial collaborations

Conclusions

- Biofuels and e-fuels can contribute to the defossilization of transport, power generation and off-road sectors;
- The IC engine can efficiently operate today with sustainable fuels with an effective contribution to the reduction of GHG emissions;
- Integrated research:
 - Fuel production from renewable sources
 - Conversion in engine
 - End-use

to support the development of new technology and sustable value chains.

Thanks!

Tommaso Lucchini

Department of Energy, Politecnico di Milano Via Lambruschini, 4a, 20156 Milano, Italy **tommaso.lucchini@polimi.it**

