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The propulsion ecosystem
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How to select a Power Unit (thermal, hybrid, electric) 
for a certain application:
• Cost
• Performance, consumption
• On-board and global conversion efficiency
• Rules: 

▪ Pollutants
▪ CO2 and other greenhouse gases

• Range
• Recharging/refuelling infrastructure

Defossilizing propulsion:
• Fossil fuels  energy carriers/vectors

Requirements:
• Availability of wind, solar and biomass energy
• Installed capacity
• Distribution and storage infrastructure



The IC engine evolution
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1992 today…

• High efficiency operation
range continuosly extended

• Maximum engine efficiency
increasing with electrification:

▪ ~40% mild-hybrid
▪ >40% full-hybrid
▪ ~ 50% series-hybrid M
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Advanced bio-fuels Synthetic fuels (e-fuels)
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Source: Imperial College/Concawe

• Expected important contribution from 
Biomethane, bio-ethanol, bio-methanol, bio-
gasoline, biodiesel and HVO.

• Decarbonization of aviation and maritime
transport

• Road transport? Efficiency vs convenience:
▪ Local production: avoiding curtailment
▪ Complementing pure electrification
▪ Possibility to import

2023: 10.8 TWh of 
electricity cut, 

enough to generate 
hydrogen to power 
up to 20,000 city 

buses throughout the 
year.

Source: W. Tillmetz (Uni-
Ulm)

Source: Porsche Consulting GmbH

Availability of advanced biofuels



Liquid storage
Liquid hydrogen (-253 C)

Liquid methane (-165 C)

Cooled ammonia (-33 C)

Pressurized ammonia (10 bar)

Methanol (ambient)

Gaseous storage
Compressed hydrogen (700 bar)

Compressed natural gas (300 bar)

E-fuels for IC engines
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E-fuels for IC engines
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E-fuels for IC engines
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H2

MeOH/EtOH

e/bio-CH4

e/bio-Gasoline bio-Diesel

HVO
DME

NH3

SI-HPDI-DF

SI-TJI-HPDI-DF-HCCI

SI-TJI-HPDI-DF-HCCI

SI-TJI

SI-TJI-HPDI-DF

CI-PCCI

CI-PCCI

CI-PCCI

SI: spark-ignition
TJI: turbulent jet ignition
HPDI: high-pressure direct-
injection

DF: dual-fuel
CI: compression-ignition
HCCI: homogeneous charge
compression ignition

PCCI: premixed charge
compression-ignition



H2 fueled IC engines (H2ICE)
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High-performance cars
Light and heavy duty 

transport
Power generation and off-

road



H2 fueled IC engines (H2ICE) - today
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Spark-ignition Compression-ignition

• Lean combustiojn (𝜆 > 2.5)
• Direct-injection (low or high 

pressure)
• Turbocharging

 Max efficiency ~45%
 zero-impact (ATS)

Diesel/HVO

(pilot)

H2

(main)

• Diffusion combustion: high compression ratio, no 
abnormal combustion

 Max efficiency >50%
 CO2 emissions lower than 3 g/t km zero-emission limit

Sources: BOSCH, PHINIA Sources: Westport, Volvo



H2 fueled IC engines (H2ICE) - challenges
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Avoid pre-ignition

Non-controlled combustion caused by hot spots and 
deposits. 
- Limitation of efficiency
- Detailed study of the causes
- Use of flexible spark plugs

• Minimizing the pilot fuel

Glow plug

Catalyst coating

Reducing H2 ignition delay

Spark-ignition Compression-ignition



H2 fueled IC engines (H2ICE) – dual-fuel
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Engine

H2

Diesel/gasoline

Ultra lean operation (𝜆 > 2)
-15% fuel consumption reduction
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• H2 tank of modest size
• System easy to build

Sources: China FAW Group, Jilin University



H2 fueled IC engines (H2ICE) – future?

13

Argon power cycle zero pollutants engine

• Closed-cycle engine (condensation of exhaust
H2O)

• H2 ed O2 from electrolysis

• 65% potential efficiency (high Ar 𝑐𝑝/𝑐𝑣 ratio)

• Suitable for distributed power generation (grid
balancing)

• APC academic and industrial research active in 
different countries



Defossilization of maritime transport
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Different IC engines onboard:
• Propulsion (low-speed – 2-stroke, medium–high speed 

- 4 stroke)
• Gensets (4 stroke)

CO2,eq WTW reduction target for maritime transport

Sources: IMO, ICCT



Defossilization of maritime transport
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Fuel oil LNG Ammonia Methanol Hydrogen

MPAT & Dahiatsu Diesel Bosch Everllence (dual-fuel 2T orders)

Ammonia

Methanol

𝜂𝑊𝑇𝑇,𝑁𝐻3 = 47%

𝜂𝑊𝑇𝑇,𝑀𝑒𝑂𝐻 = 43%

• Different technologies
▪ Retrofit
▪ Dedicated engine

 Maximizing TTW efficiency e 
emissions reduction

Source: IAV



Defossilization of maritime transport – 2S / dual-fuel

16

Diffusive Premixed

Pilot & HP 
Injection

Expansion
Compression
& LP Injection

Pilot injection, 
ignition Source: Everllence

• 95% GHG reduction

• Ammonia
combustion
efficiency >99.5% 
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Defossilization of maritime transport – 4S / NH3
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Combustion
anomalies

Ignitabilty

Fuel
conversion

Air pollutants

Climate-
relevant

emissions

• High RON and low flame speed
• GHG emissions: N2O (GWP = 300)
• Pollutants: NOx ed NH3

• Compatibility with lubricants

• Diesel pilot injection or prechamber (passive or H2-active)
• Combustion chamber design: turbulence generation
• SCR for exhaust gas after-treatment
• Maximum efficiency: ~45%

Source: LEC



Defossilization of maritime transport – 4S / MeOH
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MeOH for cars/trucks/buses
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Advantages:
• High heat of 

evaporation
• High octane number
• High flame speed
• Large flammability

range

Drawbacks:
• Cold start
• Material compatibility
• Injector cavitation

Dedicated PFI and GDI injectors

Fonti: Geely, Phinia

Vehicle applications

26000 public 
transport vehicles
(Taxi, bus)

Electrified powertrain (CR = 
15, max efficiency: 45%)

Heavy duty truckwith
dedicated engine



Road transport defossilization – drop-in e-fuels

20

• A combined use of different propulsion systems can accelerate the decarbonisation of road transport 
compared to the use of a single technology, with a significant contribution from electrified vehicles 
powered by e-fuels.

Sources: FVV, Frontiers Economics



Road transport defossilization – REEV
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• BEV platform hybridized
• Series-hybrid propulsion
• Reduced battery capacity that still guarantees 

most (short) journeys in electric mode
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Biofuels and power generation
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The ICE Group
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• In-house 1D (Gasdyn) and CFD (Lib-ICE) software development for performance and emissions 
prediction in high efficiency and low emission internal combustion engines.

• Research and industrial collaborations

H2-ICE

Ignition systemsMarine engines

Ammonia-ICE SCR TWC

Innovative substrates Thermal management



Conclusions
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• Biofuels and e-fuels can contribute to the defossilization of transport, power 
generation and off-road sectors;

• The IC engine can efficiently operate today with sustainable fuels with an effective
contribution to the reduction of GHG emissions;

• Integrated research:
▪ Fuel production from renewable sources
▪ Conversion in engine
▪ End-use
to support the development of new technology and sustable value chains.
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